1x<−3,−2<x<−1 or x>7.2(a)fg does not exist because Rg=[0,∞]⊆(−∞,3)∪(3,∞)=Df. gf:x↦(x−31)2,for x∈R,x=3.(b)f−1(x)=x1+3. Df−1=Rf=(−∞,0)∪(0,∞).3z=−1+2i.4(a)y=32+34e−43x.(b)y→32.5y=2+x+23 Transformation 1: Translate by 2 units in the negative x-axis direction.
Transformation 2: Scale by a factor of 3 parallel to the y-axis.
Transformation 3: Translate by 2 units in the positive y-axis direction.6(b)31(4i+2j+5k)(c)357(b)k=64.(c)z6+64=(z2−23z+4)(z2+23z+4)(z2+4).8(a)(25,23,211).(b)78.8∘.(c)7414 units.9(a)π(21e10−21e8−24e5+18e4+183) units3.(b)α=0.619,β=1.512.(c)0.619<x<1.512.(d)0.18 units210(b)The geometric series is convergent because −1<r=32<1. S∞=3a.(c){n∈Z:6≤n≤13}.1152 units2.