2020 H2 Math Paper 1 Answers

1
(a)
(113).{\begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix}.}
(b)
49.2.{49.2^{\circ}.}
2
5x+9y=14.{5 x + 9 y = 14.}
3
(a)
k=9.{k = -9.}
(b)
f(x)=3x92x2+92x3+{f(x) = 3 x - \frac{9}{2} x^2 + \frac{9}{2} x^3 + \ldots}
4
(a)
122(cos512π+isin512π).{\frac{1}{2} \sqrt{2} \left( \cos \frac{5}{12} \pi + \mathrm{i} \sin \frac{5}{12} \pi \right).}
(b)
z4=2(cos112π+isin112π) or z4=2(cos1112π+isin1112π).z_4 = \sqrt{2} \left( \cos \frac{1}{12} \pi + \mathrm{i} \sin \frac{1}{12} \pi \right) \allowbreak \textrm{ or } {z_4 = \sqrt{2} \left( \cos - \frac{11}{12} \pi + \mathrm{i} \sin - \frac{11}{12} \pi \right).}
5
(a)
a{\mathbf{a}} is parallel to b.{\mathbf{b}.}
a=kb,kR,k0.{\mathbf{a} = k \mathbf{b}, k \in \mathbb{R}, k \neq 0.}
(b)
(i)
The set of all possible positions of the point R{R} forms a line passing through the point P{P} and parallel to the direction vector q.{\mathbf{q}.}
(ii)
3x5y+2z=5.{3 x - 5 y + 2 z = - 5.}
The set of all possible positions of the point R{R} forms a plane passing through the point P{P} and perpendicular to the normal vector q.{\mathbf{q}.}
6
k=2.{k = 2.}
t=8.{t = - 8.}
Other root=25+65i.{\textrm{Other root} = - \frac{2}{5} + \frac{6}{5} \mathrm{i}.}
7
(a)
2x+14cos(4x)+C.{2 x + \frac{1}{4} \cos ( 4 x ) + C.}
(b)
14π2+18π.{\frac{1}{4} \pi^2 + \frac{1}{8} \pi.}
(c)
94π.{\frac{9}{4} \pi.}
8
(a)
(i)
u30=952.{u_{30} = \frac{95}{2}.}
(ii)
33452.{\frac{3345}{2}.}
(b)
(i)
S=20.{S_\infty = 20.}
(ii)
Smallest n=18.{\textrm{Smallest } n = 18.}
9
(a)
y=2x{y=2x} and y=12x{y=-\frac{1}{2}x} are perpendicular since their gradients are 2{2} and 12{-\frac{1}{2}} respectively and m1m2=2(12)=1.{m_1m_2 = 2(-\frac{1}{2}) = -1.}
y=2x{y=2x} makes an angle tan1(2){\tan^{-1}(2)} clockwise to the positive x-axis{x\textrm{-axis}} and y=12x{y=-\frac{1}{2}x} makes an angle tan1(12){-\tan^{-1}(-\frac{1}{2})} anticlockwise to the positive x-axis.{x\textrm{-axis}.}
Hence tan1(2)tan1(12)=12π.\tan^{-1}(2)-\tan^{-1}(-\frac{1}{2}) = \frac{1}{2} \pi.
(b)
0<k4.5.{0 < k \leq 4.5.}
(c)
(d)
(π243ln2) units2.{\left( \frac{\pi}{2} - \frac{4}{3} \ln 2 \right) \textrm{ units}^2.}
10
(a)
dPdt=3100P.{\frac{\mathrm{d}P}{\mathrm{d}t} = - \frac{3}{100} P.}
(b)
P=Ae3100t.{P = A \mathrm{e}^{- \frac{3}{100} t}.}
As t,P0.{\textrm{As } t \to \infty, P \to 0.}
Hence over many years the number of sheep will approach 0 and there will be no more sheep.
(c)
dPdt=3100P+n{\displaystyle \frac{\mathrm{d}P}{\mathrm{d}t} = - \frac{3}{100} P + n }
(d)
P=Ae3100t+100n3.{P = A \mathrm{e}^{- \frac{3}{100} t} + \frac{100n}{3}.}
(e)
n=15.{n = 15.}
11
(b)
x=4a+a2.{x = \sqrt{4a+a^2}.}
tanθ=24a+a2.{\tan \theta = \frac{2}{\sqrt{4a+a^2}}.}
(c)
The optimal point and optimal angle may not correspond to the highest chance of scoring.
(c)
KDAπ2 rad.{\angle KDA \approx \frac{\pi}{2} \textrm{ rad}.}
(e)
0.0801θ<π2{0.0801 \leq \theta < \frac{\pi}{2}}

Solutions

Full solutions (with working)
The actual questions are the copyright of UCLES and MOE. These answers are my own and any errors therein are mine alone.
Desmos was used to generate the sketch of the curves in Q9.