2020 H2 Math Paper 1 Full Solutions

1
(a)
(110)×(152)=(226)=2(113){\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ - 5 \\ - 2 \end{pmatrix}} \allowbreak {= \begin{pmatrix} - 2 \\ 2 \\ - 6 \end{pmatrix}}\allowbreak {= 2 \begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix}}
Vector normal to π1=(113).{\pi_1 = \begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix}.}
(b)
Let θ{\theta} be the acute angle between π1{\pi_1} and π2{\pi_2}.
n1n2=n1n2cosθ(113)(456)=(113)(456)cosθ19=1177cosθθ=49.2\begin{aligned} & \left| \mathbf{n_1} \cdot \mathbf{n_2} \right| = | \mathbf{n_1} | | \mathbf{n_2} | \cos \theta \\ & \left| \begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 5 \\ - 6 \end{pmatrix} \right| = \left| \begin{pmatrix} - 1 \\ 1 \\ - 3 \end{pmatrix} \right| \left| \begin{pmatrix} 4 \\ 5 \\ - 6 \end{pmatrix} \right| \cos \theta \\ & \left| 19 \right| = \sqrt{11} \sqrt{77} \cos \theta \\ & \theta = 49.2^{\circ} \end{aligned}
2
Differentiating w.r.t. x,{x,}
2xx22x(1+x2)(1+x2)2+2ydydxy22ydydx(1+y2)(1+y2)2=3x2y5+x35y4dydx\frac{2 x \cdot x^2 - 2 x (1 + x^2)}{(1 + x^2)^2} + \frac{2 y \frac{\mathrm{d}y}{\mathrm{d}x} \cdot y^2 - 2 y \frac{\mathrm{d}y}{\mathrm{d}x} (1 + y^2)}{(1 + y^2)^2} = 3 x^2y^5 + x^3 \cdot 5 y^4 \frac{\mathrm{d}y}{\mathrm{d}x}
Substituting x=1,y=1,{x=1, y=1,}
dydx=59y1=59(x1) \begin{aligned} & \frac{\mathrm{d}y}{\mathrm{d}x} = - \frac{5}{9} \\ & y - 1 = - \frac{5}{9} ( x - 1 ) \end{aligned}
Equation of tangent: 5x+9y=14.{5 x + 9 y = 14.}
3
(a)
f(x)=3cos(3x)1+sin(3x)f(x)=9sin(3x)(1+sin(3x))(3cos(3x))2(1+sin(3x))2=9sin(3x)9sin2(3x)9cos2(3x)(1+sin(3x))2=9sin(3x)9(1+sin(3x))2=9(1+sin(3x))(1+sin(3x))2=91+sin(3x)\begin{aligned} f'(x) &= \frac{3 \cos ( 3 x )}{1 + \sin ( 3 x )} \\ f''(x) &= \frac{ - 9 \sin ( 3 x ) \Big (1+\sin ( 3 x ) \Big) - \Big(3 \cos ( 3 x ) \Big)^2 }{\Big(1+\sin ( 3 x )\Big)^2} \\ &= \frac{ - 9 \sin ( 3 x ) - 9 \sin^2 (3 x) - 9 \cos^2 (3 x) }{\Big(1+\sin ( 3 x )\Big)^2} \\ &= \frac{ - 9 \sin ( 3 x ) - 9 }{\Big(1+\sin ( 3 x )\Big)^2} \\ &= \frac{ - 9 \Big(1+\sin ( 3 x )\Big) }{\Big(1+\sin ( 3 x )\Big)^2} \\ &= \frac{ - 9 }{1+\sin ( 3 x )} \\ \end{aligned}
k=9.{k = -9.}
(b)
f(x)=27cos(3x)(1+sin(3x))2\displaystyle f'''(x) = \frac{- 27 \cos ( 3 x )}{\Big(1+\sin ( 3 x )\Big)^2}
When x=0,f(0)=0,f(0)=3,{x=0, f(0) = 0, f'(0) = 3,} f(0)=9,f(0)=27.{f''(0) = -9, f'''(0) = -27.}
f(x)=0+3x+92!x2+273!x3+=3x92x2+92x3+\begin{aligned} f(x) &= 0 + 3 x + \frac{-9}{2!} x^2 + \frac{-27}{3!} x^3 + \ldots \\ &= 3 x - \frac{9}{2} x^2 + \frac{9}{2} x^3 + \ldots \end{aligned}
4
(a)
z1=2e13πi{z_1 = 2 \mathrm{e}^{ \frac{1}{3} \pi \mathrm{i} }}, z2=2e14πi{z_2 = \sqrt{2} \mathrm{e}^{ - \frac{1}{4} \pi \mathrm{i} }}, z3=2e16πi.{z_3 = 2 \mathrm{e}^{ \frac{1}{6} \pi \mathrm{i} }.}
z1z2z3=2e13πi2e14πi2e16πi=2e13πi22e112πi=122e512πi=122(cos512π+isin512π).\begin{aligned} \frac{z_1}{z_2 z_3} &= \frac{2 \mathrm{e}^{ \frac{1}{3} \pi \mathrm{i} }}{\sqrt{2} \mathrm{e}^{ - \frac{1}{4} \pi \mathrm{i} } \cdot 2 \mathrm{e}^{ \frac{1}{6} \pi \mathrm{i} }} \\ &= \frac{2 \mathrm{e}^{ \frac{1}{3} \pi \mathrm{i} }}{2 \sqrt{2} \mathrm{e}^{ - \frac{1}{12} \pi \mathrm{i} }} \\ &= {\textstyle \frac{1}{2} \sqrt{2} \mathrm{e}^{ \frac{5}{12} \pi \mathrm{i} }} \\ &= {\textstyle \frac{1}{2} \sqrt{2} \left( \cos \frac{5}{12} \pi + \mathrm{i} \sin \frac{5}{12} \pi \right)}. \end{aligned}
(b)
z1z4z2z3=1z1z2z3z4=1122z4=1z4=2\begin{aligned} & \left| \frac{z_1 z_4}{z_2 z_3} \right| = 1 \\ & \left| \frac{z_1}{z_2 z_3} \right| \left| z_4 \right| = 1 \\ & \frac{1}{2} \sqrt{2} \left| z_4 \right| = 1 \\ & \left| z_4 \right| = \sqrt{2} \end{aligned}
Since z1z4z2z3{\displaystyle \frac{z_1z_4}{z_2z_3}} is purely imaginary, arg(z1z4z2z3)=π2+kπ{\displaystyle \arg \left( \frac{z_1z_4}{z_2z_3} \right) = \frac{\pi}{2} + k\pi} where kZ.{k \in \mathbb{Z}.}
arg(z1z4z2z3)=π2+kπarg(z1z2z3)+argz4=π2+kπ512π+argz4=π2+kπargz4=112π+kπ\begin{aligned} & \arg \left( \frac{z_1 z_4}{z_2 z_3} \right) = \frac{\pi}{2} + k\pi \\ & \arg \left( \frac{z_1 }{z_2 z_3} \right) + \arg z_4 = \frac{\pi}{2} + k\pi \\ & \frac{5}{12} \pi + \arg z_4 = \frac{\pi}{2} + k\pi \\ & \arg z_4 = \frac{1}{12} \pi + k\pi \\ \end{aligned}
Since π<θπ,{-\pi < \theta \leq \pi,} k=0{k=0} or k=1.{k=-1.}
z4=2(cos112π+isin112π) or z4=2(cos1112π+isin1112π).z_4 = \sqrt{2} \left( \cos \frac{1}{12} \pi + \mathrm{i} \sin \frac{1}{12} \pi \right) \allowbreak \textrm{ or } {z_4 = \sqrt{2} \left( \cos - \frac{11}{12} \pi + \mathrm{i} \sin - \frac{11}{12} \pi \right).}
5
(a)
a×b=b×aa×bb×a=0a×b+a×b=02a×b=0a×b=0\begin{aligned} & \mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a} \\ & \mathbf{a} \times \mathbf{b} - \mathbf{b} \times \mathbf{a} = \mathbf{0} \\ & \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{b} = \mathbf{0} \\ & 2 \mathbf{a} \times \mathbf{b} = \mathbf{0} \\ & \mathbf{a} \times \mathbf{b} = \mathbf{0} \end{aligned}
Since a{\mathbf{a}} and b{\mathbf{b}} are non-zero,
a{\mathbf{a}} is parallel to b.{\mathbf{b}.}
a=kb,kR,k0.{\mathbf{a} = k \mathbf{b}, k \in \mathbb{R}, k \neq 0.}
(b)
(i)
(rp)×q=0(rp)=kqr=p+kq\begin{aligned} & ( \mathbf{r} - \mathbf{p} ) \times \mathbf{q} = \mathbf{0} \\ & ( \mathbf{r} - \mathbf{p} ) = k \mathbf{q} \\ & \mathbf{r} = \mathbf{p} + k \mathbf{q} \end{aligned}
The set of all possible positions of the point R{R} forms a line passing through the point P{P} and parallel to the direction vector q.{\mathbf{q}.}
(ii)
(rp)q=0rqpq=0rq=pqr(352)=(124)(352)r(352)=5(xyz)(352)=5\begin{aligned} & ( \mathbf{r} - \mathbf{p} ) \cdot \mathbf{q} = \mathbf{0} \\ & \mathbf{r} \cdot \mathbf{q} - \mathbf{p} \cdot \mathbf{q} = 0 \\ & \mathbf{r} \cdot \mathbf{q} = \mathbf{p} \cdot \mathbf{q} \\ & \mathbf{r} \cdot \begin{pmatrix} 3 \\ - 5 \\ 2 \end{pmatrix} = \begin{pmatrix} - 1 \\ 2 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ - 5 \\ 2 \end{pmatrix} \\ & \mathbf{r} \cdot \begin{pmatrix} 3 \\ - 5 \\ 2 \end{pmatrix} = - 5 \\ & \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 3 \\ - 5 \\ 2 \end{pmatrix} = - 5 \end{aligned}
3x5y+2z=5.{3 x - 5 y + 2 z = - 5.}
The set of all possible positions of the point R{R} forms a plane passing through the point P{P} and perpendicular to the normal vector q.{\mathbf{q}.}
6
Substituting z=k+ki{z=k+k\mathrm{i}} into the equation,
(k+ki)2(2+i)8i(k+ki)+t=0{(k+k\mathrm{i})^2 (2 + \mathrm{i}) - 8 \mathrm{i} (k+k\mathrm{i}) + t = 0}
k2(1+i)2(2+i)8ik(1+i)+t=0{k^2(1+\mathrm{i})^2 (2 + \mathrm{i}) - 8 \mathrm{i} k (1+\mathrm{i}) + t = 0}
k2(2+4i)+k(88i)+t=0{k^2(- 2 + 4 \mathrm{i}) + k (8 - 8 \mathrm{i}) + t = 0}
(2k2+8k+t)+(4k28k)i=0{(- 2 k^2 + 8 k+t) + (4 k^2 - 8 k)\mathrm{i} = 0}
Comparing imaginary parts, 4k28k=0{4 k^2 - 8 k=0}
Since k{k} is non-zero, k=2.{k = 2.}
Comparing real parts, 2k2+8k+t=0{- 2 k^2 + 8 k+t=0}
t=8.{t = - 8.}
Let α{\alpha} be the other root of the equation.
z2(2+i)8iz8{z^2 (2 + \mathrm{i}) - 8 \mathrm{i} z - 8}
=(2+i)(z22i)(zα){= (2 + \mathrm{i}) (z-2-2\mathrm{i})(z-\alpha)}
=(2+i)(z2+(2+2i)zαz+α(2+2i)){= (2 + \mathrm{i}) \big(z^2 + (2+2\mathrm{i})z - \alpha z + \alpha (2+2\mathrm{i}) \big)}
Comparing constants, α(2+i)(2+2i)=8{\alpha (2 + \mathrm{i})(2+2\mathrm{i}) = -8}
Other root α=8(2+i)(2+2i)=25+65i.{\displaystyle \alpha = \frac{-8}{(2 + \mathrm{i})(2+2\mathrm{i})} = - \frac{2}{5} + \frac{6}{5} \mathrm{i}.}
7
(a)
2sin(4x)dx=2x+14cos(4x)+C.{\displaystyle \int 2 - \sin ( 4 x ) \, \mathrm{d}x = 2 x + \frac{1}{4} \cos ( 4 x ) + C.}
(b)
xsin4xdx=xcos4x4+cos4x4dx=xcos4x4+sin4x16+C.\begin{aligned} \int x \sin 4x \, \mathrm{d}x &= x \frac{-\cos 4x}{4} + \int \frac{\cos 4x}{4} \, \mathrm{d} x \\ &= - \frac{x \cos 4x}{4} + \frac{\sin 4x}{16} + C. \end{aligned}
012πxf(x)dx=012π2xxsin4xdx=[x2+xcos4x4sin4x16]012π=14π2+πcos2π8sin2π16(0+0sin0)=14π2+18π.\begin{aligned} \int_0^{ \frac{1}{2} \pi } x f(x) \, \mathrm{d}x &= \int_0^{ \frac{1}{2} \pi } 2 x - x \sin 4x \, \mathrm{d}x \\ &= \left[ x^2 + \frac{x \cos 4x}{4} - \frac{\sin 4x}{16} \right]_0^{\frac{1}{2} \pi} \\ &= \frac{1}{4} \pi^2 + \frac{\pi \cos 2 \pi}{8} - \frac{\sin 2 \pi}{16} - \left( 0 + 0 - \sin 0 \right) \\ &= \frac{1}{4} \pi^2 + \frac{1}{8} \pi. \end{aligned}
(c)
sin24xdx=1cos8x2dx=x2sin8x16+C.\begin{aligned} \int \sin^2 4x \, \mathrm{d}x &= \int \frac{1 - \cos 8x }{2} \, \mathrm{d}x \\ &= \frac{x}{2} - \frac{\sin 8x}{16} + C. \end{aligned}
012π(f(x))2dx=012π44sin4x+sin24xdx=[4x+cos4x+x2sin8x16]012π=94π+cos2πsin4π16(0+cos0sin016)=94π.\begin{aligned} \int_0^{ \frac{1}{2} \pi } \Big( f(x) \Big)^2 \, \mathrm{d}x &= \int_0^{ \frac{1}{2} \pi } 4 - 4 \sin 4x + \sin^2 4x \, \mathrm{d}x \\ &= \left[ 4x + \cos 4x + \frac{x}{2} - \frac{\sin 8x}{16} \right]_0^{\frac{1}{2}\pi} \\ &= \frac{9}{4} \pi + \cos 2 \pi - \frac{\sin 4 \pi}{16} - \left( 0 + \cos 0 - \frac{\sin 0}{16} \right) \\ &= \frac{9}{4} \pi. \end{aligned}
8
(a)
(i)
a=4{a = 4}
a+4d=10{a + 4d = 10}
d=32{d = \frac{3}{2}}
u30=a+29d=952.{u_{30} = a + 29d = \frac{95}{2}.}
(ii)
S50S20=502(4+4932)202(4+1932)=33452.\begin{aligned} S_{50} - S_{20} &= \frac{50}{2} \left( 4 + 49 \cdot \frac{3}{2} \right) - \frac{20}{2} \left( 4 + 19 \cdot \frac{3}{2} \right) \\ &= \frac{3345}{2}. \end{aligned}
(b)
(i)
a=4{a = 4}
ar4=1.6384{a r^4 = 1.6384}
r=45{r = \frac{4}{5}}
S=4145=20.{\displaystyle S_\infty = \frac{4}{1-\frac{4}{5}} = 20.}
(ii)
Sn>19.64(145n)145>19.6145n>0.980.8n<0.02\begin{aligned} S_n &> 19.6 \\ \frac{4\left( 1- \frac{4}{5}^n \right)}{1 - \frac{4}{5}} &> 19.6 \\ 1 - \frac{4}{5}^n &> 0.98 \\ 0.8^n &< 0.02 \end{aligned}
nln0.8<ln0.02n \ln 0.8 < \ln 0.02
Since ln0.8<0,{\ln 0.8 < 0,}
n>ln0.02ln0.8n>17.531\begin{aligned} n &> \frac{\ln 0.02}{\ln 0.8} \\ n &> 17.531 \end{aligned}
Smallest n=18.{\textrm{Smallest } n = 18.}
9
(a)
y=2x{y=2x} and y=12x{y=-\frac{1}{2}x} are perpendicular since their gradients are 2{2} and 12{-\frac{1}{2}} respectively and m1m2=2(12)=1.{m_1m_2 = 2(-\frac{1}{2}) = -1.}
y=2x{y=2x} makes an angle tan1(2){\tan^{-1}(2)} clockwise to the positive x-axis{x\textrm{-axis}} and y=12x{y=-\frac{1}{2}x} makes an angle tan1(12){-\tan^{-1}(-\frac{1}{2})} anticlockwise to the positive x-axis.{x\textrm{-axis}.}
Hence tan1(2)tan1(12)=12π.\tan^{-1}(2)-\tan^{-1}(-\frac{1}{2}) = \frac{1}{2} \pi.
(b)
1x2+1=k3x+4{\frac{1}{x^2+1} = \frac{k}{3x+4}}
kx23x+k4=0{kx^2 - 3x + k - 4 = 0}
For C1{C_1} and C2{C_2} to intersect,
Discriminant =b24ac0{=b^2-4ac \geq 0}
94(k)(k4)0{9 - 4(k)(k-4) \geq 0}
4k216k90{4k^2 - 16k - 9 \leq 0}
12k4.5{-\frac{1}{2} \leq k \leq 4.5}
Since k>0,{k>0,} 0<k4.5.{0 < k \leq 4.5.}
(c)
(d)
Area required
=1221x2+123x+4dx{= \displaystyle \int_{\textstyle -\frac{1}{2}}^{2} \frac{1}{x^2+1} - \frac{2}{3x+4} \, \mathrm{d}x}
=[tan1x23ln3x+4]122{= \Big[ \tan^{-1} x - \frac{2}{3} \ln | 3x + 4 | \Big]_{-\frac{1}{2}}^2}
=tan1(2)tan1(12)23ln10+23ln52= \tan^{-1} (2) - \tan^{-1} (-{\textstyle \frac{1}{2}}) \allowbreak {- \frac{2}{3} \ln 10 + \frac{2}{3} \ln \frac{5}{2}}
=π223ln4{= \frac{\pi}{2} - \frac{2}{3} \ln 4}
=(π243ln2) units2.{= \left( \frac{\pi}{2} - \frac{4}{3} \ln 2 \right) \textrm{ units}^2.}
10
(a)
dPdt=3100P.{\displaystyle \frac{\mathrm{d}P}{\mathrm{d}t} = - \frac{3}{100} P.}
(b)
1PdP=3100dt{\displaystyle \int \frac{1}{P} \, \mathrm{d} P = \int - \frac{3}{100} \, \mathrm{d}t}
lnP=3100t+C{\ln | P | = - \frac{3}{100} t + C}
P=Ae3100t.{P = A \mathrm{e}^{- \frac{3}{100} t}.}
As t,P0.{\textrm{As } t \to \infty, P \to 0.}
Hence over many years the number of sheep will approach 0 and there will be no more sheep.
(c)
dPdt=3100P+n{\displaystyle \frac{\mathrm{d}P}{\mathrm{d}t} = - \frac{3}{100} P + n }
(d)
dPdt=3100(P1003n){\displaystyle \frac{\mathrm{d}P}{\mathrm{d}t} = - \frac{3}{100} \left( P - - \frac{100}{3} n \right)}
1P1003ndP=3100dt{\displaystyle \int \frac{1}{P-- \frac{100}{3} n} \, \mathrm{d} P = \int - \frac{3}{100} \, \mathrm{d}t}
lnP1003n=3100t+C{\ln | P - - \frac{100}{3} n | = - \frac{3}{100} t + C}
P=Ae3100t+1003n.{P = A \mathrm{e}^{- \frac{3}{100} t} + \frac{100}{3} n.}
(e)
As n,P1003n.{n \to \infty, P \to \frac{100}{3} n.}
1003n=500{\frac{100}{3} n = 500}
n=15.{n = 15.}
11
(a)
tanθ=tan(AKDAKC)=tanAKDtanAKC1+tanAKDtanAKC=a+4xax1+a+4xax=4x1+a2+4ax2=xx2+4a+a2\begin{aligned} \tan \theta &= \tan( \angle AKD - \angle AKC ) \\ &= \frac{\tan \angle AKD - \tan \angle AKC}{1 + \tan \angle AKD \cdot \tan AKC} \\ &= \frac{\frac{a+4}{x} - \frac{a}{x} }{ 1 + \frac{a+4}{x} \cdot \frac{a}{x} } \\ &= \frac{ \frac{4}{x} }{ 1 + \frac{a^2 + 4a }{x^2} } \\ &= \frac{x}{x^2 + 4a + a^2} \end{aligned}
(b)
Differentiating w.r.t. x,{x,}
ddx(tanθ)=4(x2+4a+a2)(4x)(2x)(x2+4a+a2){\frac{\mathrm{d}}{\mathrm{d}x} \left( \tan \theta \right) = \frac{4(x^2+4a+a^2) - (4x)(2x)}{(x^2+4a+a^2)}}
At maximum tanθ,ddx(tanθ)=0{\tan \theta, \frac{\mathrm{d}}{\mathrm{d}x} \left( \tan \theta \right) = 0}
4x2+16a+4a28x2=0{4x^2 + 16 a + 4a^2 - 8x^2 = 0}
x2=4a+a2{x^2 = 4 a + a^2}
x=4a+a2{x = \sqrt{4 a + a^2}} since x>0{x > 0}
tanθ=44a+a24a+a2+4a+a2{\displaystyle \tan \theta = \frac{4 \sqrt{4 a + a^2} }{4a + a^2 + 4a + a^2}}
=24a+a2.{\displaystyle = \frac{2}{\sqrt{4a + a^2}}.}
(c)
The optimal point and optimal angle may not correspond to the highest chance of scoring.
(d)
tanKDA=xa+4{\displaystyle \tan KDA = \frac{x}{a+4}}
=4a+a2a+4{\displaystyle = \frac{\sqrt{4a+a^2}}{a+4}}
=aa+4.{\displaystyle = \sqrt{\frac{a}{a+4}}.}
As a4,a4+a1{a \gg 4, \frac{a}{4+a} \approx 1}
tanKDA1{\tan \angle KDA \approx 1}
KDAπ2 rad.{\angle KDA \approx \frac{\pi}{2} \textrm{ rad}.}
(e)
Since XY=50,CD=4,XC=DY,{XY = 50, CD = 4, XC = DY,}
0<a23{0 < a \leq 23}
0<4a92{0 < 4a \leq 92} and 0<a2529{0 < a^2 \leq 529}
0<4a+a2621{0 < 4a + a^2 \leq 621}
0<4a+a2621{0 < \sqrt{4a + a^2} \leq \sqrt{621}}
14a+a21621{\frac{1}{\sqrt{4a + a^2}} \geq \frac{1}{\sqrt{621}} }
24a+a22621{\frac{2}{\sqrt{4a + a^2}} \geq \frac{2}{\sqrt{621}} }
tanθ2621{\tan \theta \geq \frac{2}{\sqrt{621}} }
tan12621θ<π2{\tan^{-1} \frac{2}{\sqrt{621}} \leq \theta < \frac{\pi}{2}}
0.0801θ<π2{0.0801 \leq \theta < \frac{\pi}{2}}

The actual questions are the copyright of UCLES and MOE. These answers are my own and any errors therein are mine alone.
Desmos was used to generate the sketch of the curves in Q9.