2020 H2 Math Paper 2 Full Solutions

1
Let y=ax2+bx+c{y=ax^2+bx+c}
dydx=2ax+b{\frac{\mathrm{d}y}{\mathrm{d}x} = 2ax + b}
When x=1,y=2{x=1, y=-2}
a+b+c=2\begin{equation} a + b + c = -2 \end{equation}
When x=1,dydx=0{x=1, \frac{\mathrm{d}y}{\mathrm{d}x}=0}
2a+b=0\begin{equation} 2 a + b = 0 \end{equation}
When x=2,dydx=5{x=2, \frac{\mathrm{d}y}{\mathrm{d}x}=5}
4a+b=5\begin{equation} 4 a + b = 5 \end{equation}
Solving using a G.C.,
a=2.5,b=5,c=0.5.{a=2.5, b=-5, c=0.5.}
Equation of curve: y=52x25x+12.{y = \frac{5}{2} x^2 - 5 x + \frac{1}{2}.}
2
(a)
(i)
(A) u1=7,u2=9,u3=13,{u_1 = 7, } \allowbreak { u_2 = 9, } \allowbreak { u_3 = 13, \ldots}
The sequence increases and diverges.
(B) u1=5,u2=5,u3=5,{u_1 = 5, } \allowbreak { u_2 = 5, } \allowbreak { u_3 = 5, \ldots}
The sequence is a constant sequence un=5{u_n = 5} for all nZ+.{n \in \mathbb{ Z }^+.}
(ii)
u5=101{u_5 = 101}
2u45=101    u4=53{2 u_4 - 5 = 101 \; \Rightarrow \; u_4 = 53}
2u35=53    u3=29{2 u_3 - 5 = 53 \; \Rightarrow \; u_3 = 29}
2u25=29    u2=17{2 u_2 - 5 = 29 \; \Rightarrow \; u_2 = 17}
2u15=29    u1=11{2 u_1 - 5 = 29 \; \Rightarrow \; u_1 = 11}
p=11.{p=11.}
(b)
(i)
v4=v2+2v37{v_4 = v_2 + 2v_3 - 7}
2v3=v2+2v37{2 v_3 = v_2 + 2v_3 - 7}
v2=7{v_2 = 7}
b=7{b=7}
(ii)
v5=v3+2v47=v3+2(2v3)7=5v37=5(v1+2v27)7=5(a+2b7)7=5(a+2(7)7)7=5a+28\begin{aligned} v_5 &= v_3 + 2 v_4 - 7 \\ &= v_3 + 2 (2 v_3) - 7 \\ &= 5 v_3 - 7 \\ &= 5(v_1 + 2 v_2 - 7) - 7 \\ &= 5 (a + 2 b - 7) - 7 \\ &= 5(a + 2(7) - 7) - 7 \\ &= 5 a + 28 \end{aligned}
(c)
(i)
un=SnSn1=(n311n2+4n)((n1)311(n1)2+4(n1))=(n311n2+4n)(n314n2+29n16)=3n225n+16.\begin{aligned} u_n &= S_n - S_{n-1} \\ &= (n^3 - 11 n^2 + 4 n) - \Big( (n-1)^3 - 11(n-1)^2 + 4(n-1) \Big) \\ &= (n^3 - 11 n^2 + 4 n) - (n^3 - 14 n^2 + 29 n - 16) \\ &= 3 n^2 - 25 n + 16. \end{aligned}
(ii)
Sm=S3m311m2+4m=(3)311(3)2+4(3)m311m2+4m=60n311n2+4n+60=0\begin{aligned} & S_m = S_3 \\ & m^3 - 11 m^2 + 4 m = (3)^3 - 11(3)^2 + 4(3) \\ & m^3 - 11 m^2 + 4 m = - 60 \\ & n^3 - 11 n^2 + 4 n + 60 = 0 \end{aligned}
Using G.C., m=2,3{m=-2, 3} or 10{10}
Since m>3{m > 3}, m=10.{m = 10.}
3
(a)
dydx=dydt÷dxdt=66t=1t{\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{6}{6 t} = \frac{1}{t} }
At (14,11),{(14, 11),}
t=2{t = 2}
dydx=12{\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}}
Gradient of normal =2{= - 2}
y11=2(x14){y - 11 = - 2 (x - 14)}
Cartesian equation of N{N}: 2x+y=39.{2 x + y = 39.}
(b)
The normal cuts the x{x}-axis at 392{\frac{39}{2}}
Area of triangle =12×(39214)×11=1214{ = \frac{1}{2} \times (\frac{39}{2} - 14) \times 11 = \frac{121}{4}}
The curve cuts the x{x}-axis at t=16,x=2512{t = \frac{1}{6}, x = \frac{25}{12}}
Area under curve =251214ydx=162(6t1)6tdt=302536\begin{aligned} \textrm{Area under curve } &= \int_{\frac{25}{12}}^{14} y \, \mathrm{d} x \\ &= \int_{\frac{1}{6}}^{2} (6 t - 1) 6 t \, \mathrm{d} t \\ &= \frac{3025}{36} \end{aligned}

Area required =1214+302536=205718 units2.{ = \frac{121}{4} + \frac{3025}{36} = \frac{2057}{18} \textrm{ units}^2.}
(c)
(i)
Area =205718×2×3=20573 units2.{= \frac{2057}{18} \times 2 \times 3 = \frac{2057}{3} \textrm{ units}^2.}
(ii)
Replacing y{y} with y3,{\frac{y}{3},}
y3=6t1    t=y+318{\frac{y}{3} = 6 t - 1 \; \Rightarrow \; t = \frac{y+3}{18}}
Replacing x{x} with x2,{\frac{x}{2},}
x2=3t2+2{\frac{x}{2} = 3 t^2 + 2}
x=2(3(y+318)2+2){x = 2 \left( 3 \left( \frac{y+3}{18} \right)^2 + 2 \right)}
Cartesian equation of D{D}: x=154(y+3)2+4.{x = \frac{1}{54} \left( y + 3 \right)^{ 2 } + 4.}
4
(a)
a+2h=30    h=30a2{a+2h = 30 \; \Rightarrow \; h = \frac{30-a}{2}}
H2=h2a22=(30a)2a24=22515a\begin{aligned} H^2 &= h^2 - \frac{a}{2}^2 \\ &= \frac{(30-a)^2 - a^2 }{4} \\ &= 225 - 15a \end{aligned}
(b)
V=13a2H{V = \frac{1}{3} a^2 H}
V2=19a4H2{V^2 = \frac{1}{9} a^4 H^2}
V2=19a4(22515a)=19(225a415a5){V^2 = \frac{1}{9} a^4 (225-15a) = \frac{1}{9} (225a^4 - 15a^5)}
Differentiating w.r.t. a,{a,}
2VdVda=19(900a375a4){2V \frac{\mathrm{d}V}{\mathrm{d}a} = \frac{1}{9} (900a^3 - 75a^4)}
At maximum volume dVda=0{\frac{\mathrm{d}V}{\mathrm{d}a} = 0}
900a375a4=0{900a^3 - 75a^4 = 0}
a=12{a = 12}
Maximum volume =13(12)222515(12)=1445 cm3.{ = \frac{1}{3} (12)^2 \sqrt{225 - 15(12)} = 144 \sqrt{5} \textrm{ cm}^3.}
(c)
(i)
Let A{A} be the total surface area of the four triangular faces of the pyramid
A=412ah=2a(30a2)=30aa2{A = 4 \cdot \frac{1}{2} a h = 2a \left( \frac{30-a}{2} \right) = 30a - a^2}
dAda=302a{\frac{\mathrm{d}A}{\mathrm{d}a} = 30 - 2a}
At maximum area dAda=0{\frac{\mathrm{d}A}{\mathrm{d}a} = 0}
a=15.{a = 15.}
(ii)
Net of pyramid forms a squareThe net forms a square with sides 152 cm.{15 \sqrt{2} \textrm{ cm}.}
5
(a)
0,4,10,25.{0, 4, 10, 25.}
(b)
Let T{T} denote Tina's score.
P(T=4)=2r3r+1×2r13r=2(2r1)3(3r+1){\mathrm{P}(T=4) = \frac{2r}{3r+1} \times \frac{2r-1}{3r} = \frac{2(2r-1)}{3(3r+1)}}
P(T=10)=r3r+1×2r3r×2!=4r3(3r+1){\mathrm{P}(T=10) = \frac{r}{3r+1} \times \frac{2r}{3r} \times 2! = \frac{4r}{3(3r+1)}}
P(T=25)=r3r+1×r13r=r13(3r+1){\mathrm{P}(T=25) = \frac{r}{3r+1} \times \frac{r-1}{3r} = \frac{r-1}{3(3r+1)}}
Let p{p} denote P(T=0)=1P(T=4)P(T=10)P(T=25){\mathrm{P}(T=0) = 1 - \mathrm{P}(T=4)} \allowbreak {- \mathrm{P}(T=10) - \mathrm{P}(T=25)}
The probability distribution of T{T} is
t{t} 0 4 10 25
P(T=t){P(T=t)} p{p} 2(2r1)3(3r+1){\frac{2(2r-1)}{3(3r+1)}} 4r3(3r+1){\frac{4r}{3(3r+1)}} r13(3r+1){\frac{r-1}{3(3r+1)}}
E(T)=tP(T=t)=42(2r1)3(3r+1)+104r3(3r+1)+25r13(3r+1)=16r8+40r+25r253(3r+1)=81r333(3r+1)=27r113r+1 \begin{aligned} \mathrm{E}(T) &= \sum t \, \mathrm{P}(T=t) \\ &= 4 \cdot \frac{2(2r-1)}{3(3r+1)} + 10 \cdot \frac{4r}{3(3r+1)} + 25 \cdot \frac{r-1}{3(3r+1)} \\ &= \frac{ 16r - 8 + 40r + 25r - 25 }{3(3r+1)} \\ &= \frac{ 81r - 33 }{3(3r+1)} \\ &= \frac{ 27r - 11 }{3r+1} \end{aligned}
E(T2)=t2P(T=t)=162(2r1)3(3r+1)+1004r3(3r+1)+625r13(3r+1)=64r32+400r+625r6253(3r+1)=1089r6573(3r+1)=363r2193r+1\begin{aligned} \mathrm{E}(T^2) &= \sum t^2 \, \mathrm{P}(T=t) \\ &= 16 \cdot \frac{2(2r-1)}{3(3r+1)} + 100 \cdot \frac{4r}{3(3r+1)} + 625 \cdot \frac{r-1}{3(3r+1)} \\ &= \frac{ 64r - 32 + 400r + 625r - 625 }{3(3r+1)} \\ &= \frac{ 1089r - 657 }{3(3r+1)} \\ &= \frac{ 363r - 219 }{3r+1} \end{aligned}
Var(T)=E(T2)E(T)=363r2193r+1(27r113r+1)2=(363r219)(3r+1)(27r11)2(3r+1)2=360r2+300r340(3r+1)2\begin{aligned} \mathrm{Var}(T) &= \mathrm{E}(T^2) - \mathrm{E}(T) \\ &= \frac{ 363r - 219 }{3r+1} - \left( \frac{ 27r - 11 }{3r+1} \right)^2 \\ &= \frac{(363r-219)(3r+1) - (27r-11)^2 }{(3r+1)^2} \\ &= \frac{ 360 r^2 + 300 r - 340 }{(3r+1)^2} \end{aligned}
(c)
360r2+300r340(3r+1)2=38{\displaystyle \frac{360 r^2 + 300 r - 340}{(3 r + 1)^2} = 38}
r=3.{r = 3.}
6
(a)
(b)
TN(5,1.44){T \sim N( 5, 1.44 )}
P(T>6)=0.202.{\textrm{P}(T>6) = 0.202.}
(c)
WN(21,9){W \sim N( 21, 9 )}
T+WN(26,10.44){T+W \sim N( 26, 10.44 )}
P(T+W>30)=0.10786{\textrm{P}(T+W > 30) = 0.10786}
The probability that James is late for work when he walks is 0.108{0.108} (to 3 s.f.).
(d)
T+DN(24,37.44){T+D \sim N( 24, 37.44 )}
P(T+D>30)=0.16340{P(T+D > 30) = 0.16340}Sketch of the normal distribution
P(finelate)=P(finelate)P(late)=0.7×0.107860.7×0.10789+0.3×0.16340=0.606.\begin{aligned} \textrm{P}(\textrm{fine} \mid \textrm{late}) &= \frac{\textrm{P}(\textrm{fine} \cap \textrm{late})}{\textrm{P}(\textrm{late})} \\ &= \frac{0.7 \times 0.10786}{0.7 \times 0.10789 + 0.3 \times 0.16340} \\ &= 0.606. \end{aligned}
7
To be updated
8
(a)
P(R=1)=(171)(1111)(2812)=11789515{\textrm{P}(R=1) = \frac{{17 \choose 1} {11 \choose 11} }{{28 \choose 12}} = \frac{1}{1789515}}
P(R=2)=(172)(1110)(2812)=881789515{\textrm{P}(R=2) = \frac{{17 \choose 2} {11 \choose 10} }{{28 \choose 12}} = \frac{88}{1789515}}
Hence P(R=1)<P(R=2).{\textrm{P}(R=1) < \textrm{P}(R=2).}
(b)
P(R=4)=15P(R=3)(17+r4)(118)(28+r12)=15(17+r3)(119)(28+r12)165(17+r)!4!(13+r)!=825(17+r)!3!(14+r)!14+r=20r=6.\begin{aligned} \mathrm{P}(R=4) &= 15 \, \mathrm{P}(R=3) \\ \frac{{17+r \choose 4} {11 \choose 8}}{{28+r \choose 12}} &= \frac{15 {17+r \choose 3} {11 \choose 9}}{{28+r \choose 12}} \\ \frac{165(17+r)!}{4!(13+r)!} &= \frac{825(17+r)!}{3!(14+r)!} \\ 14+r &= 20 \\ r=6. \end{aligned}
9
(a)
Each pen from the box has an equal probability of being selected into the sample of 10.
(b)
Let X{X} denote the r.v. of the number of pens that are faulty out of 10.
XB(10,0.06){X \sim \mathrm{B}(10, 0.06)}
P(X2)=0.981.{\textrm{P}(X \leq 2) = 0.981.}
(c)
Let Y{Y} denote the r.v. of the number of boxes that are rejected out of 75.
YB(75,10.98116){Y \sim \mathrm{B}(75, 1-0.98116)}
P(Y>0.7575)=1P(Y3)=0.0535.{\mathrm{P}(Y > 0.75 \cdot 75 ) = 1 - \mathrm{P}(Y \leq 3)} \allowbreak {= 0.0535.}
(d)
Let W{W} denote the r.v. of the number of pens that are faulty out of 5.
WB(5,0.06){W \sim \mathrm{B}(5, 0.06)}Tree diagram
P(accepted)=P(W=0)+P(W=1)P(W1)+P(W=2)P(W=0)=0.983.\begin{aligned} \mathrm{P}(\textrm{accepted}) &= \mathrm{P}(W=0) + \mathrm{P}(W=1) \cdot \mathrm{P}(W \leq 1) \\ & \qquad + \mathrm{P}(W=2) \cdot \mathrm{P}(W=0) \\ &= 0.983. \end{aligned}
(e)
Both testing procedures have a similar probability of having a randomly chosen box accepted for sale, but the alternative testing procedure tests less pens on average so it may be cheaper to implement.
10
(a)
Let Y{Y} be the r.v. of the amount of carbon in each bar, by weight, in percentage.
H0:μ=1.5{H_0: \mu = 1.5}
H1:μ1.5{H_1: \mu \neq 1.5}
Under H0,{H_0,}
Test statistic Z=Y1.50.0915N(0,1){\displaystyle Z = \frac{\overline{Y}-1.5}{\frac{0.09}{15}} \sim N(0,1)}
For the critical region of the test at the 5% level of significance,
y1.50.09151.3520{\displaystyle \frac{\overline{y}-1.5}{\frac{0.09}{15}} \leq -1.3520} or y1.50.09151.3520{\displaystyle \frac{\overline{y}-1.5}{\frac{0.09}{15}} \geq 1.3520}
Critical region: {yR:y1.47 or y1.53}.{\{ \overline{y} \in \mathbb{R}: \allowbreak {\overline{y} \leq 1.47 \textrm{ or } \overline{y} \geq 1.53 \}.}}
(b)
In the earlier test, the percentage of carbon in the steel bars, Y,{Y,} is known to be normally distributed so Y{\overline{Y}} will still be normally distributed.
In the new test, we no longer know if the amount of carbon in each bar is normally distributed. Moreover, the population standard deviation is not know. Hence a large sample size of 40 ensures that the sample mean amount of carbon in each bar X{\overline{X}} will be normally distributed approximately by the Central Limit Theorem.
(c)
Unbiased estimate of population mean =x=0.254{= \overline{x} = 0.254}
Unbiased estimate of population variance =s2=0.000146.{= s ^ 2 = 0.000146.}
(d)
Unbiased estimate of population mean =x=0.254{= \overline{x} = 0.254}
Unbiased estimate of population variance =s2=0.000146.{= s ^ 2 = 0.000146.}
H0:μ=0.25{H_0: \mu = 0.25}
H1:μ>0.25{H_1: \mu > 0.25}
Under H0,{H_0,}
Test statistic Z=X0.250.0001462140N(0,1){\displaystyle Z = \frac{\overline{X}-0.25}{\sqrt{\frac{0.00014621}{40}}} \sim N(0,1)}
p-value=0.01820.025H0 rejected.{p \textrm{-value} = 0.0182 \leq 0.025} \allowbreak \, \Rightarrow \, \allowbreak {H_0 \textrm{ rejected}.}
Hence there is sufficient evidence at the 2.5% level of significance to conclude that the mean amount of carbon in the flat bars is more than 0.25%.

The actual questions are the copyright of UCLES and MOE. These answers are my own and any errors therein are mine alone.
Geogebra was used to generate the picture of the net of the pyramid (Q4) while Desmos was used to generate the sketch of the normal distribution (Q6)